Symmetry group classification of three-dimensional Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
Symmetry group classification of three-dimensional Hamiltonian systems
Keywords-Hami l ton ian systems, Symmetry groups, Classification. 1. I N T R O D U C T I O N In [1], the Lie point symmet ry groups of a Hamiltonian system with two degrees of freedom were completely classified. In tha t case, a maximum dimension of 15 was obtained for a free particle and all dimensions between 1 and 7. We should clarify tha t we are dealing only with point t ransformations. In...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملInfinite Dimensional Hamiltonian Systems
where H is the Hamiltonian (”energy”) and {. , .} is a Poisson bracket on an infinite dimensional phase space, called Poisson manifold. Unlike finite dimensional Hamiltonian systems, which are ordinary differential evolution equations on finite dimensional phase spaces, for which general existence and uniqueness theorems for solutions exist, this is not the case for PDEs. There are no general e...
متن کاملLow Dimensional Hamiltonian Systems
The theory of differential forms began with a discovery of Poincaré who found conservation laws of a new type for Hamiltonian systems—The Integral Invariants. Even in the absence of non-trivial integrals of motion, there exist invariant differential forms: a symplectic two-form, or a contact one-form for geodesic flows. Some invariant forms can be naturally considered as “forms on the quotient....
متن کاملGENERIC BIFURCATION OF HAMiLTONIAN SYSTEMS WITH SYMMETRY
We study genetic bifurcations of equifibtia in one-parameter Hamiltonian systems with symmetry group F where eigenvalues of the linearized system go through zero. Theorem 3.3 classifies expected actions of F on the generalized eigenspace of this zero eigenvalue. Genetic one degree of freedom symmetric systems are classified in section 4; remarks concerning systems with more degrees of freedom a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2000
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(99)00166-4